177 research outputs found

    New mechanism of generation of large-scale magnetic field in a sheared turbulent plasma

    Full text link
    A review of recent studies on a new mechanism of generation of large-scale magnetic field in a sheared turbulent plasma is presented. This mechanism is associated with the shear-current effect which is related to the W x J-term in the mean electromotive force. This effect causes the generation of the large-scale magnetic field even in a nonrotating and nonhelical homogeneous sheared turbulent convection whereby the alpha effect vanishes. It is found that turbulent convection promotes the shear-current dynamo instability, i.e., the heat flux causes positive contribution to the shear-current effect. However, there is no dynamo action due to the shear-current effect for small hydrodynamic and magnetic Reynolds numbers even in a turbulent convection, if the spatial scaling for the turbulent correlation time is k^{-2}, where k is the small-scale wave number. We discuss here also the nonlinear mean-field dynamo due to the shear-current effect and take into account the transport of magnetic helicity as a dynamical nonlinearity. The magnetic helicity flux strongly affects the magnetic field dynamics in the nonlinear stage of the dynamo action. When the magnetic helicity flux is not small, the saturated level of the mean magnetic field is of the order of the equipartition field determined by the turbulent kinetic energy. The obtained results are important for elucidation of origin of the large-scale magnetic fields in astrophysical and cosmic sheared turbulent plasma.Comment: 7 pages, Planetory and Space Science, in pres

    Large-scale instability in a sheared nonhelical turbulence: formation of vortical structures

    Full text link
    We study a large-scale instability in a sheared nonhelical turbulence that causes generation of large-scale vorticity. Three types of the background large-scale flows are considered, i.e., the Couette and Poiseuille flows in a small-scale homogeneous turbulence, and the "log-linear" velocity shear in an inhomogeneous turbulence. It is known that laminar plane Couette flow and antisymmetric mode of laminar plane Poiseuille flow are stable with respect to small perturbations for any Reynolds numbers. We demonstrate that in a small-scale turbulence under certain conditions the large-scale Couette and Poiseuille flows are unstable due to the large-scale instability. This instability causes formation of large-scale vortical structures stretched along the mean sheared velocity. The growth rate of the large-scale instability for the "log-linear" velocity shear is much larger than that for the Couette and Poiseuille background flows. We have found a turbulent analogue of the Tollmien-Schlichting waves in a small-scale sheared turbulence. A mechanism of excitation of turbulent Tollmien-Schlichting waves is associated with a combined effect of the turbulent Reynolds stress-induced generation of perturbations of the mean vorticity and the background sheared motions. These waves can be excited even in a plane Couette flow imposed on a small-scale turbulence when perturbations of mean velocity depend on three spatial coordinates. The energy of these waves is supplied by the small-scale sheared turbulence.Comment: 12 pages, 14 figures, Phys. Rev. E, in pres

    Competition of rotation and stratification in flux concentrations

    Full text link
    In a strongly stratified turbulent layer, a uniform horizontal magnetic field can become unstable to spontaneously form local flux concentrations due to a negative contribution of turbulence to the large-scale (mean-field) magnetic pressure. This mechanism, called the negative effective magnetic pressure instability (NEMPI), is of interest in connection with dynamo scenarios where most of the magnetic field resides in the bulk of the convection zone, and not at the bottom. Recent work using the mean-field hydromagnetic equations has shown that NEMPI becomes suppressed at rather low rotation rates with Coriolis numbers as low as 0.1.}{Here we extend these earlier investigations by studying the effects of rotation both on the development of NEMPI and on the effective magnetic pressure. We also quantify the kinetic helicity from direct numerical simulations (DNS) and compare with earlier work.}{To calculate the rotational effect on the effective magnetic pressure we consider both DNS and analytical studies using the Ï„\tau approach. To study the effects of rotation on the development of NEMPI we use both DNS and mean-field calculations of the 3D hydromagnetic equations in a Cartesian domain.}{We find that the growth rates of NEMPI from earlier mean-field calculations are well reproduced with DNS, provided the Coriolis number is below about 0.06. In that case, kinetic and magnetic helicities are found to be weak. For faster rotation, dynamo action becomes possible. However, there is an intermediate range of rotation rates where dynamo action on its own is not yet possible, but the rotational suppression of NEMPI is being alleviated.}{Production of magnetic flux concentrations through the suppression of turbulent pressure appears to be possible only in the upper-most layers of the Sun, where the convective turnover time is less than 2 hours.}Comment: 13 pages, 13 figures submitted to A&

    Intense bipolar structures from stratified helical dynamos

    Full text link
    We perform direct numerical simulations of the equations of magnetohydrodynamics with external random forcing and in the presence of gravity. The domain is divided into two parts: a lower layer where the forcing is helical and an upper layer where the helicity of the forcing is zero with a smooth transition in between. At early times, a large-scale helical dynamo develops in the bottom layer. At later times the dynamo saturates, but the vertical magnetic field continues to develop and rises to form dynamic bipolar structures at the top, which later disappear and reappear. Some of the structures look similar to δ\delta spots observed in the Sun. This is the first example of magnetic flux concentrations, owing to strong density stratification, from self-consistent dynamo simulations that generate bipolar, super-equipartition strength, magnetic structures whose energy density can exceeds the turbulent kinetic energy by even a factor of ten.Comment: Published in Monthly Notices of Royal Astronomical Societ

    The negative magnetic pressure effect in stratified turbulence

    Full text link
    While the rising flux tube paradigm is an elegant theory, its basic assumptions, thin flux tubes at the bottom of the convection zone with field strengths two orders of magnitude above equipartition, remain numerically unverified at best. As such, in recent years the idea of a formation of sunspots near the top of the convection zone has generated some interest. The presence of turbulence can strongly enhance diffusive transport mechanisms, leading to an effective transport coefficient formalism in the mean-field formulation. The question is what happens to these coefficients when the turbulence becomes anisotropic due to a strong large-scale mean magnetic field. It has been noted in the past that this anisotropy can also lead to highly non-diffusive behaviour. In the present work we investigate the formation of large-scale magnetic structures as a result of a negative contribution of turbulence to the large-scale effective magnetic pressure in the presence of stratification. In direct numerical simulations of forced turbulence in a stratified box, we verify the existence of this effect. This phenomenon can cause formation of large-scale magnetic structures even from initially uniform large-scale magnetic field.Comment: 5 pages, 2 figures, submitted conference proceedings IAU symposium 273 "Physics of Sun and Star Spots
    • …
    corecore